US009117078B1

a2 United States Patent

Chien et al.

US 9,117,078 B1
Aug. 25,2015

(10) Patent No.:
(45) Date of Patent:

(54) MALWARE BEHAVIOR ANALYSIS AND

POLICY CREATION
(75) Inventors: Hao-Liang Chien, Pingtung County
(TW); Ming-Chang Shih, Taipei (TW);
Ya-Hsuan Tsai, Taipei (TW)

(73)
")

Assignee: Trend Micro Inc., Tokyo (IP)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 1460 days.
2]
(22)
(51

(52)

Appl. No.: 12/212,378

Filed: Sep. 17, 2008

Int. CL.
GO6F 21/56
U.S. CL
CPC i GO6F 21/566 (2013.01)
Field of Classification Search

None

See application file for complete search history.

(2013.01)

(58)

(56) References Cited
U.S. PATENT DOCUMENTS
5,440,723 A * 8/1995 Amoldetal.ccoceo. 714/2
6,973,577 B1* 12/2005 Kouznetsov 726/25
7,603,715 B2* 10/2009 Costaetal.ccceeenns 726/25
7,620,992 B2* 11/2009 Monastyrsky et al. 726/24
7,725,937 B1* 5/2010 LeVy .coovivininiiiees 726/23
7,854,004 B2* 12/2010 van der Made 726/23
7,877,802 B2* 1/2011 Marinescuccccceueu 726/22
8,201,244 B2* 6/2012 Sunetal.cccocevnenee. 726/22
8,375,444 B2* 2/2013 Azizetal. ..o 726/23
8,434,151 B1* 4/2013 Franklincccocoevvenee. 726/24
2003/0135791 ALl* 7/2003 Natvig ...ccooeovevvvnnennene. 714/38
2008/0016570 Al* 1/2008 Capalikcccccevevrrnenene. 726/23
2010/0031353 Al* 2/2010 Thomasetal. 726/22
OTHER PUBLICATIONS

Bayer et al., TTAnalyze: A Tool for Analyzing Malware, 2006.*

Portokalidis et al., Argos: an Emulator for Fingerprinting Zero-Day
Attacks for Advertised Honeypots with Automatic Signature Gen-
eration, ACM, 2006.*

Rieck et al.,, Learning and Classification of Malware Behavior,
Springer-Verlag, Jul. 2008.*

Willems et al. Toward Automated Dynamic Malware Analysis Using
CWSandbox, IEEE, Apr. 2007.*

Sanabria et al., Malware Analysis: Environment Design and Archi-
tecture, SANS Institute, 2007.*

White et al., Anatomy of a Commercial-Grade Immune System,
IBM, 1999 *

Mell et al., Guide to Malware Incident Prevention and Handling,
NIST, 2005.*

Sanabria et al., Malware Analysis: Environment Design and
Archtecture, SANS Institute, 2007 .*

* cited by examiner

Primary Examiner — Minh Dinh
(74) Attorney, Agent, or Firm — Beyer Law Group LLP

(57) ABSTRACT

Creating a policy to be used by a malware prevention system
uses multiple events triggered by malware. A sample of mali-
cious computer code or malware is executed in a computer
system having a kernel space and a user space. Event data
relating to multiple events caused by the malicious code
executing on the computer system are captured and stored.
The event data is configured using a specific property that
facilitates malware behavior analysis. A behavior list is then
created utilizing the multiple events and associated event
data. The behavior list, together with data in a malware behav-
ior database, is used to derive a policy for use in a malware
prevention system. The computer system is free of any mali-
cious code, including viruses, Trojan horses, or any other
unwanted software code. The malicious computer code
executes without any constraints so that the execution behav-
ior of the malicious code may be observed and captured.
Critical events are selected based on the user’s expertise and
experience in dealing with malware and a sequential stream
including the event as the events occur is created.

18 Claims, 10 Drawing Sheets

Computer System
212 200
Mahware Behavior /
System Behavior Database -~ 312
Analyzer
215(‘32 Stream Policy
D List
306
302 04 | Analyzing Manager 310
Analysis Policy L |
Capture Maodule Creation
Event Recaiver]f303 | Filter Manager }f303
]
204
User Space
P 206 r 208 Kemel Space
- 202
Event Activity
Manager Moniter

U.S. Patent Aug. 25, 2015 Sheet 1 of 10 US 9,117,078 B1

Capture Malware Behavior on PC
(multiple single events)

Y

Create Behavior List based on
Critical Events

!

Derive Policy from Behavior List [

FIG. 1

102

104

106

U.S. Patent Aug. 25, 2015 Sheet 2 of 10 US 9,117,078 B1

~212
Malware Behavior
Database
~210 ~214
System Behavior Malware Detection
Analyzer System
~ 204
_______ User Space
Kernel Space
- 202
- 208
Activity Monitor
206
Event Manager \
Computer System
("Clean PC")

FIG. 2

US 9,117,078 B1

Sheet 3 of 10

Aug. 25,2015

U.S. Patent

£ "Old

Jopuap sabeuepy
ARy A3
202 —, —
aoedg [aLuay 8oz — o0g
" “soedg sesn ___ =——" "~ "
0z
Y
508 — Jabeuep Joy1g cog—| 1eAlR0ay JUeAl
uopeals) |npow
L2104 sIsAleuy . aimde)
— voe —
OLE JaBeuep BuizAleuy Zoe
90¢
18N
Adiiod Weans ,(.u_‘w
Jazheuy
z1e — SR Joiaeyeq welsAg
\ JoiaeLeg semen
o0e FA WA —
WwaysAg JendwoD

U.S. Patent Aug. 25, 2015 Sheet 4 of 10 US 9,117,078 B1

Event Structure

-~ 402 - 404 -~ 4086

Subject performs Opearation on Object FI G. 4

+

Display Dialog |- 814 Display Event |~ 802
Box Capture Window
(if needed) l
Initiate System |- 804
Select events 616 Event Capture
Create é |
Behavior List Stop System |- 806
Event Capture
Create Policy |~ 818 Display Events |- 808
based on List Sequentially
Datact Event - 810
END Selection

Detect Option Selection (e.g. |- 812
"Follow Process Stream™)

FIG. 8

US 9,117,078 B1

Sheet 5 of 10

Aug. 25,2015

U.S. Patent

G 'Oid

—{ dois |

205
60:00:00 Buwuny

%t b Zl 910

%00 0 Aasiboy

Z05 %EEE 5] Id¥

%00 0 sssedoid

%30 0 glend

{e10] 10 9% A [0l

ainde uang —

[>T JoNUOR JuBAT
ojjuers | swensbew) | qiood | ewnt | -on
AddT Jea™ uoissaudxT - | | rean4

TL ool FExEa

follodipeis sisdleuy aimded upg 8|k

b =]

N_vo.m

US 9,117,078 B1

Sheet 6 of 10

Aug. 25,2015

U.S. Patent

9 "Old

aled (190 sAl

Bl - uonesadg

770 Nujddy : anjep 4ey LisiBay

SMOPUIARUOIS/SAIUBLINIL LN SMOPUMOSOIINISMB0SIN THH Aa) AnsiBiay
fsibey peiao B

SX9SNSMEpUIMLY | LJe4 aBew| ssa00l oeigng

Lo e FExa D

Riogpelxg ssdieny amdeny pp3 a4

[<JET]

~ AN

001} © Q] Ss80044 13lang 1 909
§580014 loelang 3
Jueng Ansiiay
aLed 13 JuaAg
axa Bgpupmismopuip Joj sjoo) BulBBnqagisalid uesbasdyD 2l sjess) 158 00LL LlLoDgE 8
WAUNTLA SMOPUNIIOSORPRBIBMOSUINTIH &oi AlrsiBoyt sjupm 158} 00LL Z¥PIBT L
Aowepjenpadeywz |dy 18D Jaoidx3 SsZBL ZLSHPZ 9
‘Bapumsmopuipg 10} s100) BuiBBngaqiseny weiboigio ssaocld sjeal) Jasojcha3 G526l 95FZT) g
JojesuaswAleJuys vaseeisBuas puB SJUBLIROGSQLD S)id 8jea)D JBswiusy pZSL EZ0LEBO b
peail | B1eaIdMZ |dY (IBD Jauojch G261 JSOEE0 €
Bled\dih 1\S30MaSHRSI0AUODIIALNDWISASINTYH A AnsiBay alm iBswusiy FZSl LOOZL'O AN
worBapumismopuip, 10} sjoo) sBuiBBngagyse)y weibodyD el eeal) 18101dx3 §Z6L 000000 I
ojujwery | ewensBew| | qgiood | euwny | oN
AddF Jesl) ucisseudxT - | |BEIE|

US 9,117,078 B1

Sheet 7 of 10

Aug. 25,2015

U.S. Patent

L Oid
80f ~
Jaqpy se ssaocud sy A|ddy 0L
JUs4a apoaag N
WEBAS S5800id MO]|0S
axa BapuimsmopuIa Joj sjpoy Bur < Sousigysy sulll 158} 00LL LIODBE 8
uaA] BN 1881 ODLL Z¥PI6E Ji
WRINO\EN SMODUIMLOSOINIEMCSINTIH A8) ASIBay Slum Jaiojdx3 T | S AL 9
BapuIMSMOpUIM 10} Si00) BuibBngamss)3 weiBoigy D) ssaond 8jeald Jalojdx3 G261 9S¥ZZL g
IDIRIAUBO UIBNEQUYS uamessBuag pue Suewindosdy) 8l sleai) JBswusy veer 20LB80 b
PESIl LBIERIIMZ 1Y IIED Jauo|dx3 GZ6L JS9EE0 g
BIeyido] \SeoiAIasyagIanuoeIUaLnOISISASI THH Aoy AisiBay ajum 1Bswuspy pZel LODZLO Z
o Bupuimismopuis 103 5100 sBufbngaqyseyy welboidy ey eald Jasoldx3z G261 000000 !
804/ LUBAS $S820ud MO||04
!
Kiowsplenmadeisz |dy 118D Jasodx3 GZ6lL ZISPPE g
Bopuismepuis 1oy 0oy BuiBBnosisalrd weiBoigyD sse00ig s1eas) Jasojdx3 GZ6lL 9SvITL g
pealy | a)esIDmz |4y ([eD Jausojdx3 SZ6lL [SSEED g
o Bupumsmopuis 1o} sjoo) sBuiingagsaliy weiboidyd a4 aes1) Jasoidx3 SZ6lL 000000 b
&
f oL S

[AVFA

U.S. Patent Aug. 25, 2015 Sheet 8 of 10 US 9,117,078 B1

Follows Process Stream Dialog Box 3902

AEGIS Event Analysis =]5]X]
Parsing Result
'
OpenFile B
Event 1 Create File CA....
API Call
Event 3 Call AP| 2w
Write Ragistry
Event 5 Write Registry.. 910
Delete File
Event € Cleanup File C:\ g
Terminate Process
RootKit AJ Behavior ‘|
Event 7 terminate Process E.exe Open Fils
Wite REQ'SUY Terminate Process
Event & Write Registry HKCU.... Write Registry
[
Make Behavior List
[
[Save As| Print || [v]
[Make Behavior List |[Filter out this stream || Close |
I J

)))

904 206 908

FIG. 9

US 9,117,078 B1

Sheet 9 of 10

0} "OId

Aug. 25, 2015

U.S. Patent

000!}
, §
[eouel (o]
‘swiajed pausieLl 0} USamaq Soursip auy . SOUBSI] UIgIAA
UoREDO| JO
I gju) waag | [ebues uepes B UM agAeLw uonised paydiew ay) 1BSE0 qidsg
AddY Jea[@ S ugissa . J3RJO U paydew ag
pinoys pue wayed auo UL} aJouw Isisucd Aew Avjod v BEBRIO
@ aweN Adljod
<[] A_, oyuj Adtjed —
=) N £o110d 1oRIpGT |
\N_uo A __

FO0L

U.S. Patent Aug. 25, 2015 Sheet 10 of 10 US 9,117,078 B1
1100
ral
1114
1100
&
/1122 /1124 /1126 /1114
PROCESSOR(S) MEMORY FIXED DISK REMS;‘S’QBLE
A h X
1420
) h 4 Y y / -
il F A L Ll
1104 1110 1112 1130 1140
4 4 4 i N
NETWORK
DISPLAY | |KEYBOARD| | MousE SPEAKERS NrEREas

FIG. 11B

US 9,117,078 B1

1
MALWARE BEHAVIOR ANALYSIS AND
POLICY CREATION

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to computer network security.
More specifically, it relates to software and computer systems
for creating policies for malware detection and behavior
analysis systems.

2. Description of the Related Art

A conventional malware detection and prevention system
may operate using malware policies developed for detecting
potentially malicious behavior in a computer system. The
accuracy and efficiency of such a system depends in large part
on the specificity of the policies which it uses to operate.
Presently, polices are developed using single events. This
limits the abilities of the malware detection system. Processes
for analyzing malicious system behavior analyze a single
event that results from the malware operating on the system.
This may be too narrow and may limit the functionality of the
malware detection and prevention system. Analysis based on
a single event results in malware policies that are not very
precise and which may result in a high frequency of false
positives. That is, when a “white list” is checked in the mal-
ware prevention system, the event being checked may be in
the white list but should not be because it may be part of a
malicious process stream. Generally, it is difficult to charac-
terize malicious behavior by examining one event. However,
presently it is difficult to obtain policies that are derived from
examining multiple events in malicious behavior process
streams. For example, conventionally, malware executes on a
PC and when the malware’s behavior on the PC is analyzed,
a single event that is believed to be caused by the malware is
used to derive a policy, which is used by the malware detec-
tion and prevention system. This system uses a white list to
determine which events are acceptable and the white list, in
turn, is determined by the policy. If the policy is not precise,
then there is a high occurrence of false positives using the
white list. Thus, it would be desirable to have a more precise
process and system for making malware detection/prevention
policies.

SUMMARY OF THE INVENTION

In one embodiment, a method of creating a policy to be
used by a malware prevention system is described. A sample
of malicious computer code or malware is executed in a
computer system having a kernel space and a user space. The
computer system is connected to a malware prevention sys-
tem. Event data relating to multiple events caused by the
malicious code executing on the computer system are cap-
tured and stored. The event data is configured using a specific
property, such as process, that facilitates malware behavior
analysis. A behavior list is created utilizing the multiple
events and associated event data. The behavior list is then
used, together with data in a malware behavior database, to
derive a policy for use in a malware prevention system. In one
embodiment, the computer system is free of any malicious
code, including viruses, Trojan horses, or other malicious
software code. The malicious computer code sample executes
without any constraints so that the execution behavior of the
malicious code may be observed and captured. In another
embodiment, critical events are selected and a sequential
process stream including the event as the events occur is
created.

10

15

20

25

30

35

40

45

50

55

60

65

2

Another embodiment is a computer system for creating a
policy for use in a malware detection system. The system
includes a processor and a system behavior analysis compo-
nent. The analysis component may include an event capture
module, an analysis module, and a policy creation module.
The computer system also has a memory that may contain a
malware behavior database that stores malware samples and
results from parsing the samples for analysis. It may also
contain event data describing an event caused by malicious
computer code. In one embodiment, the computer system
does not have any malware. In another embodiment, the event
capture module captures the effects of the malicious com-
puter code execution. In another embodiment, the computer
system also includes an activity monitor and an event man-
ager operating in the kernel space of the computer system.
The event capture module also includes an event receiver for
interfacing with the activity monitor. In another embodiment,
the analysis module includes a filter manager for identifying
events having a specific process identifier and an analyzing
manager for creating a process stream. The event data is
configured to include a subject field, an operation field, and an
object field.

BRIEF DESCRIPTION OF THE DRAWINGS

References are made to the accompanying drawings,
which form a part of the description and in which are shown,
by way of illustration, particular embodiments:

FIG. 1 is a flow diagram showing a process of deriving a
behavior list for malware detection system policy in accor-
dance with one embodiment of the present invention;

FIG. 2 is an overview block diagram showing components
and connections relevant to one embodiment of the present
invention;

FIG. 3 is a detailed logical block diagram of a system
behavior analyzer in accordance with one embodiment;

FIG. 4 is a block diagram showing a format of an event in
accordance with one embodiment;

FIG. 5 is a sample screen shot of a user interface related to
capture module;

FIG. 6 is a sample screen shot of a user interface showing
an event listing;

FIG. 7 is a sample screen shot of a user interface related to
the analysis module;

FIG. 8 is a flow diagram of a process of capturing events,
analyzing them, and creating a behavior list in accordance
with one embodiment;

FIG. 9 is a sample screen diagram of a Follow Process
Stream dialog box in accordance with one embodiment;

FIG. 10 is a sample screen diagram showing another dialog
box which allows a user to create and name a policy in a text
input window; and

FIGS. 11A and 11B illustrate a computer system suitable
for implementing embodiments of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

Methods and systems for creating malware behavior lists
which are utilized to derive malware detection policies in
malware detection and behavior monitoring systems (“mal-
ware detection systems”) are described in the various figures.
As is known in the field of malware detection, policies for
malware detection systems are typically developed by an
anti-malware or computer security service provider who sup-
plies malware detection systems to customers. Malware
detection policies are often developed by service providers in
a controlled environment, such as in a computer software lab.

US 9,117,078 B1

3

For example, policies may be developed by executing or
running samples of new malware (e.g., a new virus strain) on
malware-free operating systems (“clean PCs”) in the service
provider’s computer lab. The service provider carefully
observes and analyzes single events created by the malware
sample (as described above). In this manner, the service pro-
vider derives the malware’s behavior. Samples are often
obtained by service provider employees and associates from
the “real world” computing environment, typically the Inter-
net.

Observing behavior of the sample malware includes iden-
tifying critical events that result during execution of the mal-
ware and creating malware behavior lists. Although not
included in present invention, it is from these malware behav-
ior lists that malware detection policies may eventually be
created for use on malware detection systems.

FIG. 1 is a high-level flow diagram of a process of deriving
amalware detection policy using a behavior listinaccordance
with the first embodiment of the present invention. As noted,
this process executes in a controlled environment, such as a
computer software lab operated by an anti-malware service
provider, such as TrendMicro, Inc. of Cupertino, Calif.
Before the first step is performed, the service provider or
related obtains a malware sample from an external environ-
ment. The sample may be a new outbreak of a virus which the
service provider obtained and has delivered to the provider’s
lab. The service provider executes the malware sample, which
may be referred to more generally as an unknown malicious
process, on a virus-free client having a clean operating sys-
tem. That is, the service provider lets the malware code run
freely on the PC, simulating malware execution in a real
world environment. Malware may be malicious processes
such as BOTS, Trojan horses, Instant Messages, Worms, mal-
ware that exploits software from specific vendors (e.g.,
Microsoft) and thousands of other specific malware samples.

Atstep 102 the service provider executes the malware code
sample (which may be the entire malware program) on a clean
PC and captures and records the malware behavior on the PC.
In one embodiment, the service provider records this behav-
ior by creating a data record for each event that results from
the malware. In one embodiment, when the malware begins
execution on the PC and the service provider employee, such
as a virus expert (“user”) initiates an event capture process
utilizing a software capture module, described below, and
certain user interfaces also described below. As noted earlier,
the malware is allowed to operate freely on the clean PC
without any constraints so that the full effect of its behavior
may be observed and captured. The user stops the event
capture process of step 102 when she believes that the mali-
cious process has essentially “run its course.” The user may
make this decision, for example, by observing whether cer-
tain critical files have been modified or whether specific
activities in the operating system have occurred, activities
that malware would normally cause. The user exercises her
professional discretion to decide when to stop the event cap-
ture. If the sample malware is from an entirely new breed of
malicious software and does harm that previous malware did
not, the user may simply allow events to be captured for a
longer time and collect a larger sampling of events. As
described below, the user may end event capturing via an
event capture dialog box.

At step 104 the user creates a malware behavior list based
on events captured at step 102. In one embodiment, a behavior
list is a sequence or stream of events that are characteristic or
clearly indicative of execution of the malware sample.
Examples of events include write to file, read file, append file,
create registry, call API, file [/O, terminate, and others. As is

10

15

20

25

30

35

40

45

50

55

60

65

4

known in the art, not all of the events caused by the malware
sample are necessarily malicious; some may be harmless or
routine steps which many non-malicious processes would
normally execute. Some events may even be “red herrings,” or
events that are intended to mislead or divert attention from the
actual malicious behavior. The user, having expertise in virus
and malware behavior, selects the appropriate critical events
and creates a behavior list, as described below. The user may
select multiple events from an event list which she considers
to be critical or significant with respect to characterizing the
behavior of the malware or for detecting the malware. In this
manner, multiple events are used to create one or more behav-
ior lists. At step 106 the behavior lists are provided so that they
may be used to derive or extract policy or, more specifically,
policies that are used in behavior monitoring analysis which
may be one component in a malware detection system. A
policy database of the malware detection system is updated
with the new policies. The policy database may also be
referred to as a malware database.

FIG. 2 is an overview block diagram of a computer system
200 showing components and connections relevant to one
embodiment of the present invention. Most of the compo-
nents reside in a user space 204 and some in a kernel space
202 of'a clean PC, the demarcation shown by the dashed line.
As described in FIG. 1, these components and their related
processes reside and take place in a controlled environment
and virus-free operating system. Once the malware sample
has been downloaded or installed on the computer 200, which
may emulate, for example, a client PC in a network, a home
computer, a server, or a mobile computing device, the user
lets the malware run, as described above. At this stage an
event manager 206 in kernel space 202 begins monitoring
behavior of the executing malware. Event manager 206 man-
ages system interfaces (also referred to as system “hooks™). In
order to “monitor” events, event manager 202 may use a
mini-filter to obtain data on system events caused by the
malware and transmit this data to an activity monitor 208. A
user mode hook may be used to collect application events and
other events in the user space. Obtaining system events at this
stage in kernel 202 by event manager 206 difterent from (and
is a sense complements) the capturing of non-system events
in user space 204, as described below. Event manager 206
transmits system event data in kernel 202 to an activity moni-
tor 208 which performs as an interface between event man-
ager 206 and components in user space 204. Activity monitor
208 receives events from event manager 206 and transmits
them to system behavior analyzer 210. In one embodiment, a
malware detection system may have drivers to perform the
functions of event manager 206 and activity monitor 208.

Activity monitor 208 interfaces with system behavior ana-
lyzer 210 in user space 204. Analyzer 210 is a software
component with modules that perform various functions,
such as event capturing and analysis, and is described in
greater detail in FIG. 3. In another embodiment, analyzer 210
may be embodied in firmware on a suitable hardware com-
ponent. As a software component, it may reside in computer
memory, such as ROM, RAM, non-volatile memory, cache
memory, or other suitable storage media. It may also be stored
on a CD-ROM, USB key, or other portable memory device.
Analyzer 210 shares data with a malware database 212, which
it uses for certain analysis functions. When a policy has been
derived by analyzer 210 based on a behavior list, the policy is
transmitted to malware detection system, which includes
behavior monitoring functionality monitor 214. The policy
may be transmitted to a “streaming policy” list that stores
various policies utilized by detection system 214 (a list of
streaming policies contains policies that are not based upon

US 9,117,078 B1

5

detection of only a single event, but rather are based upon
detection of multiple events or a “stream” of sequential
events).
FIG. 3 is a logical block diagram of system behavior ana-
lyzer 210 in accordance with one embodiment. As described
above, activity monitor 208 in kernel space 202 transmits
event data (via activity monitor 208) to behavior analyzer
210. In one embodiment, an event capture module 302 in
analyzer 210 receives the event data. Event capture module
302 creates a sequential event stream made up of events as
they occur; that is, event capture manager 302 creates a time-
based list of events. The list of events is transmitted to analy-
sis module 304. In one embodiment, event capture module
302 has an event receiver module 303 that directly interfaces
with activity monitor 208 and receives the actual event data as
it is transmitted from kernel space 202 to user space 204.
FIG. 4 is a block diagram showing a format of an event in
accordance with one embodiment. An event includes three
components: a subject 402, an operation 404, and an object
406. Subject 402 performs operation 404 on object 406.
Examples of subjects include ProcessLive, ProcessAny, and
Process. Examples of operations include create, call, write,
erase, and the like. Examples of objects include directories,
registries, APIs, etc. The event data is configured in to this
format by event capture module 302. The formatted event
data is sent to analysis module 304.
In one embodiment, analysis module 304 uses a filter man-
ager 308 to parse and filter the event stream created by event
capture module 302. As described above, an event in an event
stream is caused by execution of the sample malware. The
event stream may be analyzed by a user using malware data-
base 212, where data on the sample malware (e.g., virus,
Trojan horse) behavior is stored. In one embodiment, mal-
ware database 212 stores a listing of malware samples, of
which there may be thousands. It also contains results from
parsing these malware samples, such as registries, file opera-
tions, and event sequences. These parsing results generally
describe the behavior and actions that are characteristic of the
malware samples. Analysis module 304 may transmit data to
and receive data from malware database 212. Analysis mod-
ule 304 enables the user to create a behavior list. Described in
more detail below, a behavior list is a list of events selected by
the user which characterize or is representative of behavior of
the sample malware. There may be more than one behavior
list for each sample malware. The use may perform this task
using analysis manager 306 and various user interfaces
described below. The behavior list is transmitted to a policy
creation module 310 which creates a policy based on the
behavior list for use in a malware detection system using
behavior analysis. In one embodiment, a policy is comprised
of one or more rules. A rule may have, generally, the same
format as an event. The policies, comprised of rules, are
stored in a rules database, which may also be referred to as a
stream-list policy file, in the malware detection system. Each
time the malware detection system, the file or database is
loaded into the system’s memory. The policy, which may be
referred to as a “multi-event” behavior policy, is then trans-
mitted to a rules database 312 (a component in malware
detection system 214). Module 310 may be used to create a
policy. For example, a policy may contain numerous rules
such as:
Rule 1: Subject “Any process”, Operation “Create”, Object
“Other Process”

Rule 2: Subject “Any process”, Operation “Open”, Object
“File-wshtcpip.dll”

Rule 3: Subject “Any process”, Operation “Open”, Object
“File-kerne132.d11”

10

15

20

25

30

35

40

45

50

55

60

65

6

Rule 4: Subject “Any process”, Operation “Open”, Object
“File-RTUTILS.dII”

Rule 5: Subject “Any process”, Operation “Open”, Object
“File-RASAPI32.d11”

Rule 6: Subject “Any process”, Operation “Create”, Object
“Mutex-RasPbFile”

Rule 7: Subject “Any process”, Operation “Open”, Object
“File-rpert4.dll”

FIG. 5 is a sample screen shot of a user interface related to
event capture module 302. It shows one example of a screen
configuration for obtaining data from a user and displaying
the data. Many variations of this configuration may be used to
design other screen shots. A dialog box 502 is shown in a
system behavior analyzer screen 504. In a top menu bar 506
the user can select one of three functions (in addition to “File”
and “Edit”). They correspond to the modules 302, 304, and
310 in system behavior analyzer component 210, namely,
“Capture” “Analysis” and “ExtractPolicy”. If the Capture
option is selected, dialog box 502 is displayed and the user
may begin an event capture sequence for the sample malware.
That is, the malware will start executing (or may already be
executing) and capture module 302 begins operation. Dialog
box 502 may display various types of information, such as the
total number of events captured and event category. The per-
centage of the total for each type of event may also be pro-
vided. For example, API events comprise 33.3% of all event
captured. In other embodiments, this information may not be
provided or may be displayed in a different format. At the
bottom of box 502, the total running time of the event cap-
turing function is provided (in this example, 9 seconds) and a
button 506 which the user may click on to stop the event
capturing at which stage capture module 302 will cease
operation. As noted above, the amount of time that the event
capture run may be decided by the user and may depend on
various factors such as which files have been affected, occur-
rence of certain events, total number of events captured, and
the like.

FIG. 6 is a sample screen shot of a user interface showing
anevent stream. A screen 602 has a first window 604 (top) and
a second window 606 (bottom). Screen 602 shows the same
three options as shown in menu bar 506 (Capture, Analysis,
and ExtractPolicy). Window 604 displays an event stream, a
time-based listing of events that were captured and formatted
in the previous (event capture step). The event stream is now
presented in a manner that facilitates examination by the user
for the purpose of creating a behavior list.

In one embodiment, there is a column showing a sequential
number for each event in this (e.g., 1 to 8) and another column
(“Time”) showing the time at which each event began. Here
the first event shown happens to be the first event to be
captured and, thus, shows a time of 0.00000. The second
event started at 0.12001, the third at 0.33657, and so on. Also
shown is a process identification (“Proc 1D”) column which
displays an identifier having a 4-digit format (in this example)
that identifies a process. An event typically executes as part of
a process and this “Proc ID” data informs the user in which
the event executes of which process the event executes.
Events 1, 3,5, and 6 execute in process 1925 and events 2 and
4 execute in process 1324. Also shown is an “ImageName”
column that may contain a process name (e.g., Explorer,
MSNMessenger). The last column in window 604 is an
“Event Info” column which provides more information on the
event. Some examples are “Create File C:\ ” “Write
Registry Key HKLM . . . ” and “Call API ZwMapVirtual . . .
. In one embodiment, the Event Info column provides suffi-
cient information to identify subject 402, object 406, and
operation 404 of an event.

US 9,117,078 B1

7

The user can select an event record, such as the highlighted
record 605 with event number 7 in window 604 and view the
event data in greater detail and in an alternative format as
shown in window 606. Window 606 may be referred to as an
Event Detail Panel. Here the data is presented in a more
readable format that may facilitate analysis by the user. At the
top, the name or category of the event is provided, e.g.,
“Registry Event.” Below that, the subject is provided, “Pro-
cess” together with an identifier for that subject (“1100”) and
a process image path. Below that, the object is provided,
“Registry,” along with information relevant to the “Registry,”
such as registry key and registry key value. The information
provided will depend on the nature of object 406 and subject
402. Finally, the operation is provided, “Write.” This detailed
event information may be provided for each event selected in
window 604.

FIG. 7 is a sample screen shot of a user interface related to
analysis module 304. In one embodiment, the bottom portion
ofascreen 702 is a window 704 that has content similar to the
content in window 604. In window 704 there are eight event
records displayed (as in window 604). Event record number 6
is selected. When an event is choose, the user can select the
“Analysis” option described earlier (not shown in FIG. 7).
The user may do this to analyze a specific process steam. A
process stream is based on an event stream (events having the
same process identifier). That is, the event selected (or any
event) belongs to at least one particular process, the process
having a “Proc ID,” as described in FIG. 6. When the Analysis
option is selected, a window 706 is displayed providing the
user with various options, namely, Follow Process Stream,
Decode Event, and Apply the Process as Filter.

To analyze the highlighted event, the user selects the Fol-
low Process Stream option. Analysis module 304 initiates
filtering the selected event, in that, module 304 collects all
events that are part of the same process that were captured
during the event capturing period. More specifically, filter
manager 308 applies a display filter to the events displayed in
window 704. The output of this filtering (which was initiated
by selecting the Follow Process Stream option) is displayed in
top window 708, which appears when the analysis is com-
plete. In one embodiment, the event records that are output
from the filtering are displayed in sequential order (as indi-
cated in the time field 710). In this example, event records 1,
3,5, and 6 are displayed, all belonging to process having Proc
1D 1925, the same process of the event record selected in
window 704. In one embodiment, the same event data is
displayed in the same format in Process Stream analysis
window 708, that is, the first column is event record number,
the second is start time, followed by process identifier, image
name, and event information. The process stream shows
events having the same Proc ID in the same order as they
occurred on the PC. The user may also select “Apply the
process as a filter” option which causes the behavior analysis
system to use the process identifier as a filtering condition to
filter the process stream or continuously receive events from
the specific process. The “Decode event” option allows the
user to show the detail of the selected event. MarkedEvent
option is used to highlight the selected event.

FIG. 8 is a flow diagram of a process of capturing events,
analyzing them, and creating a behavior list in accordance
with one embodiment. At step 802 event capture module 302
in system behavior analyzer 210 displays event capture win-
dow 502 which enables the user to initiate an event capture on
an executing malware sample on a virus-free PC. At step 804
system behavior analyzer 210 initiates event capture (i.e., it
begins examining activity in kernel space 202) which, in turn,
invokes event manager 206 and activity monitor 208. At step

10

15

20

25

30

35

40

45

50

55

60

65

8

806 event capturing is stopped as instructed by the user press-
ing stop button 506 in display event capture window 502. At
step 808 the captured events are displayed sequentially as
shown in window 604. In other embodiments, they may be
displayed based on other criteria, such as event type. At step
810 the user selects an event and this selection is detected by
analysis module 304. The user selects an event based on the
user’s belief that the event was caused by the malware. The
user may already know which malware they are examining.
The user may already have knowledge to identify critical
events caused by the malware. At step 812 analysis module
304 detects that the user has selected one of the options
available for analyzing the selected event. For example, the
user may select the “Follow Process Stream” option in dialog
box 706. The user may also select “Apply the process as filter”
option or one of the other options described above. At step
814 window 708 is displayed, if needed. This same data may
also be presented in a different format as shown in FIG. 9. At
step 816 the user examines the events belonging to a specific
process and selects events that she believes are significant or
relevant in characterizing the sample malware and create a
behavior list. The user may create more than one behavior list
from the events. At step 818 a policy for use in the malware
detection system using a behavior analysis approach is cre-
ated based on a behavior list. The policy is stored in the
malware detection system.

FIG. 9 is a sample screen diagram of a Follow Process
Stream dialog box in accordance with one embodiment. A
dialog box 902 is titled “Parsing Result” and shows in more
detail and in a different format event data that was also dis-
played in top window 708 of FIG. 7. Some of the events
shown are Open File, API Call, Write Registry, Delete File,
Terminate Process, and Write Registry. Dialog box 902 pre-
sents the events in a format that allows the user to clearly see
the type of event more generally. As noted, it is essentially the
event data that results from selecting the “Follow Process
Stream” option in window 704. The event number and event
information (as described in window 604) are also shown, but
less prominently. From box 902 the user may select one ofthe
following options: Make Behavior List 904, Filter out this
Stream 906, or Close 910. The relevant option for the present
invention is Make Behavior List 904. The user selects mul-
tiple events and presses the “Make Behavior List” option 904.
The events selected will depend on the user’s experience in
dealing with malware behavior issues. Selection of events
may also depend on a query result from the malware database
212. This may occur before window 902, the behavior moni-
toring system sends the process behavior to malware database
and provides a list of possible malicious events. The user can
choose the malicious events to create the behavior list. The
user may assign a name to the behavior list, such as “RoolKit
Al Behavior List,” as shown in FIG. 9. For Rootkit AJ Behav-
ior List 910, the user selected Open File, Terminate Process,
and Write Register events from the process. If the user selects
“Filter out the Stream” option 906, the interface may return to
window 604 and may only show events of the process
selected for filtering.

FIG. 10 is a sample screen shot showing a dialog box 1002
which allows a user to create (or “extract”) and name a policy
in text-input window 1004. As noted above, the policy is used
in a malware detection system that includes behavior moni-
toring. After the user enters a policy name, the policy may be
saved and sent to malware prevention system by pressing the
OK button 1006. Also shown are three links, “Ordered,”
“Depth, Offset,” and “Within, Distance.” The user may select
any of these links and enter further data. The values entered
for these options are determined by the user based on her

US 9,117,078 B1

9

experience. The user may also use malware database 212
which contains data on malware behavior, such as dropping
files, API calling sequences, dropping registers, and the like.
Malware database 212 may contain registry changes and file
changes describing what the malware does (e.g., an image
name, operation, directory data, and other data). Database
212 may also contain event sequence data on the order of
specific events caused by the malware. The event sequence
may contain the number of the event, a process identifier,
event time, event name, and argument names and values. The
user may create more than one behavior list from the malware
sample. For example, the user may believe that the malware
can be characterized by different sequences of events and may
want a separate behavior list for each event sequence. As
described above, an event is a subject+operation+object. This
same format may be used in the policy. A policy is comprised
of'a series of rules that may have the same format as an event.
Further detail on these options and implementations of poli-
cies in a malware detection system is provided in patent
application Ser. No. 12/212,250, titled “Multi-Behavior
Policy Matching for Malware Detection,” filed on Sep. 17,
2008, which is incorporated herein by reference in its entirety
and for all purposes.

FIGS. 11A and 11B illustrate a computer system 1100
suitable for implementing embodiments of the present inven-
tion. FIG. 11 A shows one possible physical form of the com-
puter system. Of course, the computer system may have many
physical forms including an integrated circuit, a printed cir-
cuit board, a small handheld device (such as a mobile tele-
phone, handset or PDA), a personal computer or a super
computer. Computer system 1100 includes a monitor 1102, a
display 1104, a housing 1106, a disk drive 1108, a keyboard
1110 and a mouse 1112. Disk 1114 is a computer-readable
medium used to transfer data to and from computer system
1100.

FIG. 11B is an example of a block diagram for computer
system 1100. Attached to system bus 1120 are a wide variety
of subsystems. Processor(s) 1122 (also referred to as central
processing units, or CPUs) are coupled to storage devices
including memory 1124. Memory 1124 includes random
access memory (RAM) and read-only memory (ROM). As is
well known in the art, ROM acts to transfer data and instruc-
tions uni-directionally to the CPU and RAM is used typically
to transfer data and instructions in a bi-directional manner.
Both of these types of memories may include any suitable of
the computer-readable media described below. A fixed disk
1126 is also coupled bi-directionally to CPU 1122; it provides
additional data storage capacity and may also include any of
the computer-readable media described below. Fixed disk
1126 may be used to store programs, data and the like and is
typically a secondary storage medium (such as a hard disk)
that is slower than primary storage. It will be appreciated that
the information retained within fixed disk 1126, may, in
appropriate cases, be incorporated in standard fashion as vir-
tual memory in memory 1124. Removable disk 1114 may
take the form of any of the computer-readable media
described below.

CPU 1122 is also coupled to a variety of input/output
devices such as display 1104, keyboard 1110, mouse 1112
and speakers 1130. In general, an input/output device may be
any of: video displays, track balls, mice, keyboards, micro-
phones, touch-sensitive displays, transducer card readers,
magnetic or paper tape readers, tablets, styluses, voice or
handwriting recognizers, biometrics readers, or other com-
puters. CPU 1122 optionally may be coupled to another com-
puter or telecommunications network using network inter-
face 1140. With such a network interface, it is contemplated

10

15

20

25

30

35

40

45

50

55

10

that the CPU might receive information from the network, or
might output information to the network in the course of
performing the above-described method steps. Furthermore,
method embodiments of the present invention may execute
solely upon CPU 1122 or may execute over a network such as
the Internet in conjunction with a remote CPU that shares a
portion of the processing.
In addition, embodiments of the present invention further
relate to computer storage products with a computer-readable
medium that have computer code thereon for performing
various computer-implemented operations. The media and
computer code may be those specially designed and con-
structed for the purposes of the present invention, or they may
be of the kind well known and available to those having skill
in the computer software arts. Examples of computer-read-
able media include, but are not limited to: magnetic media
such as hard disks, floppy disks, and magnetic tape; optical
media such as CD-ROMs and holographic devices; magneto-
optical media such as floptical disks; and hardware devices
that are specially configured to store and execute program
code, such as application-specific integrated circuits
(ASICs), programmable logic devices (PLDs) and ROM and
RAM devices. Examples of computer code include machine
code, such as produced by a compiler, and files containing
higher-level code that are executed by a computer using an
interpreter.
Although illustrative embodiments and applications of this
invention are shown and described herein, many variations
and modifications are possible which remain within the con-
cept, scope, and spirit of the invention, and these variations
would become clear to those of ordinary skill in the art after
perusal of this application. Accordingly, the embodiments
described are illustrative and not restrictive, and the invention
is not to be limited to the details given herein, but may be
modified within the scope and equivalents of the appended
claims.
We claim:
1. A method of creating a malware detection policy, the
method comprising:
executing malware code in a malware-free computer sys-
tem connected to a malware prevention system;

capturing event data caused by the malware in the com-
puter system, wherein said capturing is performed for a
length of time determined by a user and an event capture
window is displayed while the event data is being cap-
tured;

formatting the event data into a subject field, and operation

field, and an object field;

configuring the event data according to processes execut-

ing on the computer system from the malware code,
thereby facilitating behavior analysis of the malware
code;

providing a user interface for said user to select specific

event data to create a behavior list based on input from
said user;

creating a behavior list utilizing the event data selected by

said user; and
deriving, via a malware policy creation module, a malware
detection policy from the behavior list, the malware
detection policy including a set of rules in which each
rule includes a subject, an operation, and an object; and

providing the malware detection policy to a malware detec-
tion system.

2. A method as recited in claim 1 wherein executing mal-
ware further comprises executing the malware code without
any constraints, thereby enabling observation and capture of
the malware code execution behavior.

US 9,117,078 B1

11

3. A method as recited in claim 1 wherein executing mal-
ware code further comprises: detecting and obtaining events
in a kernel space and in a user space of the computer system.

4. A method as recited in claim 1 further comprising cre-
ating a data record for an event that is performed by the
malware.

5. A method as recited in claim 1 further comprising cre-
ating a sequential process stream wherein all events in the
process stream belong to the same process.

6. A method as recited in claim 1 wherein the behavior list
includes a plurality of event data records having the specific
format.

7. A method as recited in claim 1 wherein deriving a mal-
ware detection policy further comprises utilizing a malware
database storing malware behavior data.

8. A method as recited in claim 1 wherein the specific event
data selected to create a behavior list is indicative of execution
of said malware.

9. The method of claim 1, further comprising providing a
user interface for the user to indicate length of time.

10. A malware-free computer system for creating a mal-
ware detection system policy, the malware-free computer
system comprising:

a processor;

a system behavior analyzer component including an event
capture module, an analysis module, and a policy cre-
ation module, wherein the event capture module per-
forms a capturing function for a length of time as deter-
mined by a user;

amalware behavior database that includes malware sample
listings and malware parsing results; and

event data describing an event caused by malicious com-
puter code, said event data formatted into a subject field,
an operation field, and an object field, wherein a behav-

10

15

20

25

30

12

ior list is created by the user providing input relating to
selection of specific event data;

a policy creation module to create a malware detection
policy based on the behavior list created by the user and
provide the malware policy to a malware detection sys-
tem, wherein a malware policy includes a set of rules in
which each rule includes a subject, an operation, and an
object.

11. A computer system as recited in claim 10 wherein the
computer system is separate from a behavior analysis com-
puter system.

12. A computer system as recited in claim 10 wherein the
processor executes malicious computer code and wherein the
event capture module captures effects of the malicious com-
puter code execution.

13. A computer system as recited in claim 12 wherein the
event capture module executes in a user space of the computer
system.

14. A computer system as recited in claim 10 further com-
prising an activity monitor and an event manager operating in
a kernel space of the computer system.

15. A computer system as recited in claim 14 wherein the
event capture module further comprises an event receiver for
interfacing with the activity monitor.

16. A computer system as recited in claim 10 wherein the
analysis module further comprises a filter manager for iden-
tifying events having a specific process identifier.

17. A computer system as recited in claim 10 wherein the
analysis module further comprises an analyzing manager for
creating a process stream and a behavior list.

18. A malware-free computer system as recited in claim 10
wherein the specific event data to create a behavior list is
indicative of execution of said malware.

#* #* #* #* #*

